UNCLASSIFIED

AD NUMBER AD331391 **CLASSIFICATION CHANGES** TO: unclassified confidential FROM: **LIMITATION CHANGES** TO: Approved for public release, distribution unlimited FROM: Controlling DoD Organization: Director, Naval Research Laboratory, Washington, DC 20375. **AUTHORITY** NRL Code/5309 memo dtd 20 Feb 1997; NRL

Code/5309 memo dtd 20 Feb 1997

UNCLASSIFIED

AD NUMBER
AD331391
CLASSIFICATION CHANGES
ТО
confidential
FROM
secret
AUTHORITY
31 Jul 1974, per document marking, DoDD 5200.10

SECRET

AD 331 391

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

A MADRE EVALUATION REPORT V

[UNCLASSIFIED TITLE]

S. R. Curley, J. M. Headrick, J. L. Ahearn, W. C. Headrick, F. H. Utley, D. C. Rohlfs, and M. E. Thorp

> Radar Techniques Branch Radar Division

> > July 27, 1962

. .

40%

U. S. NAVAL RESEARCH LABORATORY Washington. D.C.

SECRET
DOWNGRADED AT 12 YEAR INTERVALS
NOT AUTOMATICALLY DEPLASSIBLED
TOWNSHIP SEED 10

UNCLASSIFIED

AUG 31 1962

NOTICE:

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEAN-ING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

SECRET NRL Report 5824

A MADRE EVALUATION REPORT V

[UNCLASSIFIED TITLE]

DETECTION AND ANALYSIS OF TRAILBLAZER IIA

[SECRET TITLE]

S. R. Curley, J. M. Headrick, J. L. Ahearn, W. C. Headrick, F. H. Utley, D. C. Rohlfs, and M. E. Thorp

> Radar Techniques Branch Radar Division

> > July 27, 1962

U. S. NAVAL RESEARCH LABORATORY Washington, D.C.

ABSTRACT [Secret]

The four-stage Trailblazer IIa was launched from Wallops Island for the purpose of studying phenomena associated with the high speed reentry bodies. The Madre radar observed portions of the trajectories of all four stages. The first stage was observed throughout the most of its flight. The second stage was observed on the way up until it left the antenna pattern and again on the way down when it reappeared in the antenna pattern. The other two stages were observed just prior to and during reentry.

PROBLEM STATUS

This is an interim report on one phase of the problem; work is continuing on this and other phases.

AUTHORIZATION

NRL Problem R02-23 Project RF 001-02-41-4007 MIPR-30-635-8-160-6136 MIPR 60-2134 ARPA 160-61

Manuscript submitted July 10, 1962.

A MADRE EVALUATION REPORT V [Unclassified Title]

DETECTION AND ANALYSIS OF TRAILBLAZER IIA [Secret Title]

Madre is a high frequency coherent doppler radar located at the Chesapeake Bay Annex of the Naval Research Laboratory. It has been in operation for several months and is normally used for over-the-horizon detection of aircraft and rocket powered launches on the Atlantic and Pacific Missile Ranges. Details of the operation of Madre can be found in a number of reports. One of these is NRL Memo Report 1251, 1 December 1961, "A Madre Evaluation Report," J. M. Headrick, et al.

Recently Madre has been used a number of times for direct observation of launches of interest from Wallops Island, Virginia. The launch site is approximately 70 naut mi. from the Madre site. The Trailblazer IIa was such a launch.

The Madre parameters for the test were as follows:

Power Radiated 100 kw average Frequency 26.6 Mc Repetition Rate 180 pps Pulse Length 350 μ s Antenna Gain 15 db one way Antenna Direction 142°

The Trailblazer rocket vehicle is a unique research tool which has been developed to study the physical phenomena which occur during reentry of high speed objects into the earth's atmosphere. Trailblazer IIa consisted of four stages. Two of the stages, namely a Castor engine and a Lance engine, were used to propel the vehicle upward, and the other two stages were used to fire the payload downward to provide a high speed reentry body. The high speed reentry body is a metal sphere with a 15-inch diameter. The design reentry speed is about 14,000 knots.

The vehicle was launched from Wallops Island on 14 December 1961 at 2:09:48 a.m. EST. The Madre radar observed portions of the trajectories of all four stages. The first stage was observed through most of its trajectory. The second stage was observed on the way up until it went out of the antenna pattern and again on the way down when it reentered the antenna pattern. The other two stages were observed just prior to and during reentry.

Complete trajectory post flight data has not been available, therefore Fig. 1 is a representation of the trajectories as reconstructed from Madre data. The broken lines represent the lobes in the vertical antenna pattern. The power in the fifth lobe is down by about 3 db and falls away rapidly with increases in vertical angle. This means that the second, third and fourth stages were not observed during large portions of their trajectories. In reconstructing the observed portions of the trajectories, the slant ranges were measured directly, the heights were calculated from the antenna lobe structure and the timing was taken from WWV. In reconstructing the unobserved portions of the trajectories, a parabolic path was assumed for the second stage. This was not the most accurate choice since the Madre radar was not in the plane of the trajectory, but it was made for simplicity.

Fig. 1 - Trajectory geometry reconstructed from Madre data. Note the curved Earth.

Velocity calculations from this path would be inaccurate. Apogee was obtained from post-flight data supplied by Lincoln Laboratories, as was the times of the third and fourth stage ignitions. Air resistance was neglected.

For the purpose of understanding the remaining figures some details of the Madre receiving system will be given here. The receiver converts the received signals to a zero or near zero IF and these signals are passed through a set of comb filters which reject the ordinary backscatter clutter by rejecting the repetition rate frequency and all of its harmonics plus a few cycles on either side of these frequencies. The doppler frequency from each target will appear around zero frequency and around the repetition rate frequency and its harmonics. The recede and approach dopplers were not resolved for this test, although it can be done easily. Therefore, around zero frequency and 180 cps both recede and approach dopplers will appear. For example, in Figs. 2 and 3, there appears the approach doppler associated with zero frequency and the recede doppler associated with 180 cps. The data presented here were taken from the output of the comb filters and recorded on magnetic tape. A Kay Vibralyzer was then used to spectrum analyze the tape.

The Madre radar also employs a real time analysis system which was in operation during this test. The display of this analysis does not give a detailed time history and since they would not add substantially to the results presented here those data will not be presented.

Figures 2a, 2b, 3a and 3b are the complete records of the doppler versus time information that were obtained during the test. The thick black line near 180 cps is the doppler

frequency of a local aircraft. The 60 cps lines associated with zero cps and 180 cps can be seen and they are caused by equipment. A number of very high acceleration targets will be noted throughout the spectrum-time record. These returns whose doppler changes by 90 cps in a second or so are from meteor entry ionization. The regular fading of the target is due to its presence in an antenna null. Details of the vertical antenna pattern have been published in NRL Memo Report 1316 of 1 February 1962, "A Madre Evaluation Report III (U)," J. M. Headrick, et al.

In Fig. 2a, the target is first detected at about $T_{\rm O}+10$ seconds or 10 seconds after launch. Castor burnout, separation and Lance ignition were designed to occur at about $T_{\rm O}+35$ seconds. The record shows a target acquiring more acceleration from about $T_{\rm O}+35$ to about $T_{\rm O}+40$ seconds. Lance burnout was designed to occur at about $T_{\rm O}+42$ seconds. At about this time both the Castor and the Lance appear on the record. The Lance doppler is the weak signal that starts at about 30 cps at 42 seconds. It passes into an antenna null at $T_{\rm O}+43$ seconds, emerges at $T_{\rm O}+45$ seconds at about 60 cps, passes into another null from which it emerges at $T_{\rm O}+55$ seconds and finally into another null from which it emerges at $T_{\rm O}+58$ seconds and near 90 cps. It finally disappears at about $T_{\rm O}+62$ seconds. This weak signal is more evident if the record is observed at grazing angle. The rest of the record from $T_{\rm O}+42$ seconds to $T_{\rm O}+188$ seconds shows the doppler associated with the ballistic trajectory of the first stage Castor at which time it drops out of the antenna pattern.

Figures 3a and 3b are the record of the other three stages on their return to earth. At about $T_{\rm O}+395$ seconds, a weak skin track of the high velocity sphere appears and is followed by the enhancement due to reentry ionization from $T_{\rm O}+398$ seconds to $T_{\rm O}+402$ seconds. The slant range to this target was 170 naut mi.

At about T_0+404 seconds the skin track from the next to last stage appears and the reentry enhancement occurs at T_0+409 seconds. The slant range to this target was about 182 naut mi.

At about T_0 +488 seconds the skin track from the Lance appears, decelerates and finally disappears at about 513 seconds. The slant range to this target was 270 naut mi.

Although this is the first report of a Trailblazer detection from the Madre site at the Chesapeake Bay Annex, other Trailblazer detections have been accomplished by a back-scatter radar from NRL, Washington, D. C. site. A summary of these may be found in NRL Memo Report 1176 of 1 June 1961, "High Frequency Radar Observations Made on Trailblazer 1g," S. R. Curley, et al. Some conclusions reached in this earlier report may have to be changed in the light of new data presented in this report.

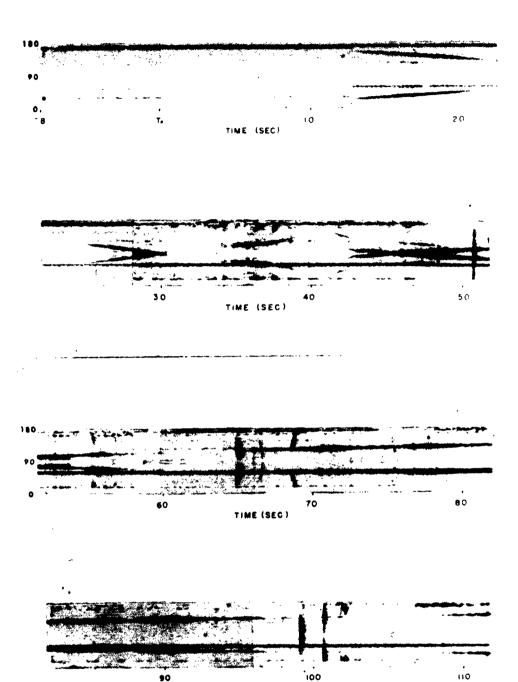


Fig. 2a - Doppler frequency versus time record for the launch phase. The ordinate represents time in seconds after launch time $\{T_o\}$.

TIME (SEC)

Fig. 2b - Doppler frequency versus time record for the launch phase. The ordinate represents time in seconds after launch time $\{|T_0|\}$.

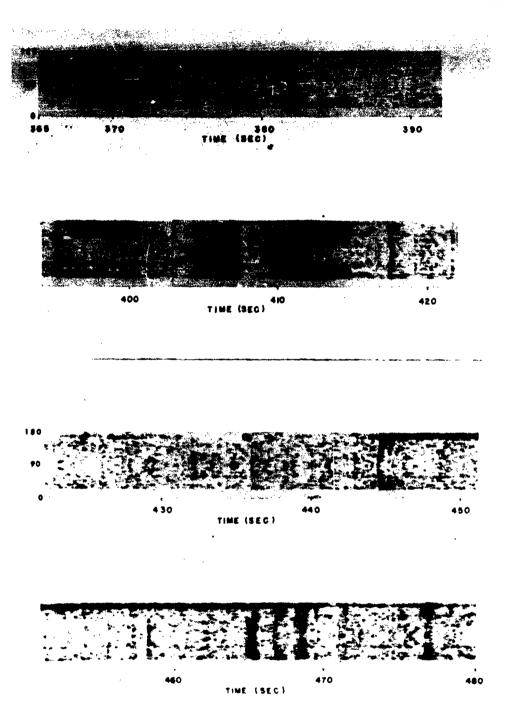


Fig. 3a - Doppler frequency versus time record for the reentry phase.

これのことでは、これのことのできるというないのできます。 これのこうしょうしょう

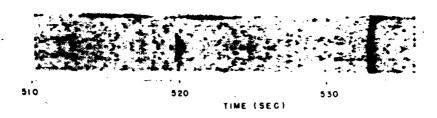


Fig. 3b - Doppler frequency versus time record for the reentry phase.

* * *

SECRET

DISTRUBUTION

DISTROBUTION	Copy No.
Dir., Advanced Research Projects Agency, Wash. 25, D.C.	1-4
Dir., Weapons System & Evaluation Group, Rm. 1E880 The Pentagon, Wash. 25, D.C. Attn: Mrs. Sjogven	5-6
NBS, US Dept. of Commerce, Wash. 25, D.C. Attn: Mr. L. E. Tveten	7
Dir., National Security Agency, Wash. 25, D.C.	8
CO, USNOTUnit, Patrick AFB, Florida Attn: CDR A. L. Jacobson	9
Dir., USNEL, San Diego 52, Calif.	10
Chief of Naval Research, Dept. of the Navy, Wash. 25, D.C. Attn: Code 427 463 418	11 12 13
Chief of Naval Operations, Dept. of the Navy, Wash. 25, D.C. Attn: OP-92 OP-30 OP-70 OP-71 OP-07T OP-03EG	14-17 18 19 20 21 22
Chief. BuShips, Dept. of the Navy, Wash. 25, D.C.	23
Dir., Special Projects Div., Dept. of the Navy, Wash. 25, D.C.	24
Director of Defense (R&E), Dept. of Defense, Wash. 25, D.C. Attn: Air Defense	25-26
CO, USNATC, Patuxent River NAS, Patuxent River, Md. Attn: Mr. D. Decker	27
CO, USNOL, Corona, Calif. Attn: Mr. V. Hildebrand	28
CDR, Naval Missile Center, Point Mugu, Calif. Attn: Technical Library, Code N03022	29-30
CO, US Army Signal Radio Propagation Agency, Ft. Monmouth, N.J. Attn: SIGRP-A	31
CDR, Army Rocket & Guided Missile Agency, Huntsville, Alabama	32

DISTRIBUTION (Cont'	d)
----------------	-------	----

	Copy No
CO, Picatinny Arsenal, Technical Research Section AAWL Dover, New Jersey Attn: Dr. Davis	33
Office, Director of Defense (R&E), Office of Electronics Rm. 301033, The Pentagon Attn: Mr. J. J. Donovan	34
CO, US Army Signal Electronic Research Unit, P.O. Box 205 Mountain View, Calif.	35
Office, Chief of Ordnance, Dept. of the Army, Wash. 25, D.C. Attn: ORDTX - Dr. C. M. Hudson	36
Hdqs., USAF, Office Asst. Chief of Staff, Wash. 25, D.C. Attn: MAJ A. T. Miller	37
Hdqs., AFCRLabs, Hanscom Field, Bedford, Mass. Attn: CRRK, Dr. Philip Newman CRRI, Mr. William F. Ring	38 39
CDR, RADC, Griffiss AFB, New York Attn: RALTT, Mr. F. Bradley RCLTS, Mr. T. Maggio	40 41
CDR, Air Technical Intelligence Center, USAF, Wright-Patterson AFB, Ohio Attn: Dr. P. J. Overbo Mr. Goff	42 43
Hdqs., USAF, Dept. of the Air Force, Office for Atomic Energy DCS/O, Washington 25, D.C.	44
Hdqs., USAF, Washington 25, D.C. Attn: AFDRD-GW	45
CDR, Air Force Office of Scientific Research, Wash. 25, D.C. Attn: Code SRY	46
Hdqs., Offutt AFB, Nebraska Attn: Strategic Air Command	47
CDR, Air Force Ballistic Missile Div., Air Force Unit Post Office Los Angeles 45, Calif.	48
Hdqs., North American Air Defense Command, Ent AFB Colorado Springs, Colo. Attn: NELC (Advanced Projects Group)	49
Dir. of Communications and Electronics, Ent AFB Colorado Springs, Colo. Attn: ADOAC-DL, ADC	50

DISTRIBUTION (Cont'd)

, ,	Copy No.
Electro-Physics Labs., ACF Electronics Div., 3355 - 52nd Ave. Hyattsville, Md. Attn: Mr. W. T. Whelan	51
Stanford Electronics Lab., Stanford Univ., Stanford, Calif. Attn: Dr. O. G. Villard	52
Raytheon Mfg. Co., Wayland Laboratory, Waltham, Mass. Attn: Mr. D. A. Hedlund	53
General Electric Co., Court St., Syracuse, N.Y. Attn: Dr. G. H. Millman	54
Lockheed Aircraft Corp., Calif. Div., Burbank, Calif. Attn: Mr. R. A. Bailey	55
Pilotless Aircraft Div., Boeing Airplane Co., Seattle 24, Wash. Attn: Mr. F. S. Holman	56
The Martin Co., Baltimore 3, Md. Attn: Dr. D. M. Sukhia	57
Radio Corp. of America, Aerospace Comm. and Controls Div. Burlington, Mass. Attn: Mr. J. Robinovitz	58
MIT, Lincoln Labs., Box 73, Lexington 73, Mass. Attn: Dr. J. H. Chisholm (Radio Prop. Group) Mr. Melvin Stone	59 60
The Pennsylvania State Univ., University Park, Penna. Attn: Mr. H. D. Rix	61
The Rand Corp., 1700 Main St., Santa Monica, Calif. Attn: Dr. Cullen Crain	62
Bendix Systems Div., The Bendix Corp., 3300 Plymouth Road Ann Arbor, Mich. Attn: Mr. C. M. Shaar (Assoc. Dir. of Engineering)	63
Smyth Research Associates, 3555 Aero Court, San Diego 11, Calif. Attn: Mr. Steven Weisbrod	64
Convair Div. of General Dynamics, 3165 Pacific Coast Highway San Diego 12, Calif. Attn: Dr. Bond	65
Stanford Research Institute, Menlo Park, Calif.	88.87

DISTRIBUTION (Cont'd)

	Copy No.
Thompson Ramo-Wooldridge, Inc., Box 90534 Airport Station Los Angeles, Calif. Attn: Technical Information Services	68
APL/JHU, 8621 Georgia Ave., Silver Spring, Md. Attn: Mr. G. L. Seielstad (NavOrd 7386)	69
Chief, Army Security Agency, Arlington Hall Station Arlington 12, Va.	70
CDR, Air Force Systems Command, USAF, ASD, Wright-Patterson Air Force Base, Ohio Attn: ASNDCE, Mr. W. A. Dynes	71
Airborne Instruments Laboratory, Melville, Long Island, New York Attn: ESRDT, MAJ Henry Jones	72
Analytic Services, Inc., 5202 Leesburg Pike, Alexandria, Va. Attn: Mr. Ray Timm	73
CDR, Ent AFB, Colorado Attn: LtCol M. R. Gripe, Hqs. NORAD, NPSD-R	74
Hdqs., USAF, Washington 25, D.C. Attn: LtCol R. M. Cosel AFDRT	75
Dir., National Security Agency, Fort George G. Meade, Md. Attn: C-3141	76
Westinghouse Electric Corp., Defense Center-Baltimore, Technical Information Center, P.O. Box 1693, Baltimore, Md.	77
Institute of Science & Technology, The Univ. of Michigan, P.O. Box 618, Ann Arbor, Mich. Attn: BAMIRAC-ad	78
Systems Branch, US Army Scientific Liaison & Advisory Group P.O. Box 7157 Apex Station, Wash. 4, D.C. Attn: Mr. Richard A. Krueger	79
Aero Geo Astro Corp., P.O. Box 1082, Edsall & Lincolnia Roads Alexandria, Va.	80
Director, DASA Data Center, P.O Drawer QQ, Santa Barbara, Calif.	81
ASTIA, Arlington, Va. Attn: TIPDR	82-91

SECRET

Naval Research Laboratory. Report 5824 [SECRET].] 1. MADRE EVALUATION REPORT V [Unclassified Title]. by S. R. Curley, J. M. Headrick, J. L. Ahearn, W. C. Headrick, F. H. Utley, D. C. Rohlfs, and M. E. Thorp. 11 pp. and figs., July 27, 1962.

Reentry bodies -

Radar analysis

Trailblazer IIA

Madre

Curiey, S. R.

III.

The four-stage Traiblazer Ila was launched from all four stages. The first stage was observed throughobserved on the way up until it left the antenna pattern Wallope Island for the purpose of studying phenomena antenna pattern. The other two stages were observed Madre radar observed portions of the trajectories of and again on the way down when it reappeared in the associated with the high speed reentry bodies. The just prior to and during reentry. [Secret Abstract] out the most of its flight. The second stage was

Headrick, W. C.

Z.

Rohlfs, D. C.

VIII.

Utley, F. H.

VII.

Thorp, M. E.

Headrick, J. M.

≥

Ahearn, J. L.

SECRET

SECRET

Naval Research Laboratory. Report 5824 [SECRET].
MADRE EVALUATION REPORT V [Unclassified Title], by S. R. Curley, J. M. Headrick, J. L. Ahearn, W. C. Headrick, F. H. Ulley, D. C. Rohlfs, and M. E. Thorp. 11 pp. and figs., July 27, 1962.

Reentry bodies .

Radar analysis

Trailblazer IIA

Madre

VIII. VII. ≥. 5 III. The four-stage Traiblazer Ils was launched from all four stages. The first stage was observed throughobserved on the way up until it left the antenna pattern Wallops Island for the purpose of studying phenomena astems pattern. The other two stages were observed Mindre radar observed portions of the trajectories of and again on the way down when it reappeared in the just prior to and during reentry. [Secret Abstract] associated with the high speed reentry bodies. The out the most of its flight. The second stage was

Headrick, W. C.

Rohlfs, D. C.

Ulley, F. H.

Thorp, M. S.

Headrick, J. M. Abearn, J. L.

Curley, S. R.

SECRET

Naval Research Laboratory. Report 5824 [SECRET]. MADRE EVALUATION REPORT V [Unclassified Title], by S. R. Curley, J. M. Headrick, J. L. Abearn, W. C. Headrick, F. H. Utley, D. C. Rohlfs, and M. E. Thorp. 11 pp. and figs., July 27, 1962.

Reentry bodies -

Radar analysis

The four-stage Traiblazer IIs was launched from all four stages. The first stage was observed throughobserved on the way up until it left the antenna pattern and again on the way down when it reappeared in the Wallops Island for the purpose of studying phenomena associated with the high speed reentry bodies. The Madre radar observed portions of the trajectories of antenna pattern. The other two stages were observed just prior to and during reentry. [Secret Abstract] out the most of its flight. The second stage was

Headrick, W. C.

VIII. Rohiffs, D. C. Thorp, M. E.

VII. Utley, F. H.

Abearn, J. L.

Headrick, J. M.

≥

Curley, S. R.

Trailbiazer IIA

Madre

SECRET

Naval Research Laboratory. Report 5824 [SECRET]. MADRE EVALUATION REPORT V [Unclassified THIS], by S. R. Curley, J. M. Headrick, J. L. Abearn, W. C. Headrick, F. H. Utley, D. C. Rohifs, and M. E. Thorp. 11 pp. and figs., July 27, 1962.

Recentry bodies -

Radar analysis

Traibheser IIA

Madre radar observed portions of the trajectories of all four stages. The first stage was observed throughout the most of its flight. The second stage was observed on the way up until it left the autenna pattern and again on the way down when it reappeared in the Wallops Island for the purpose of studying phenomena associated with the high speed reentry bodies. The intenna pattern. The other two stages were observed just prior to and during reentry. [Secret Abstract]

Beatrick, W. C.

Utley, P. H.

Absorts, J. L.

Beadrick, J. M.

Ourley, S. R.

VIII. BOBIES, D. C. Zi. ≥ Ħ The four-stage Trailblazer Ha was launched from

Thorp, M. E.

MEMORANDUM

20 February 1997

Subj:

Document Declassification

Ref:

- (1) Code 5309 Memorandum of 29 Jan. 1997
- (2) Distribution Statements for Technical Publications NRL/PU/5230-95-293

Encl:

- (a) Code 5309 Memorandum of 29 Jan. 1997
- (b) List of old Code 5320 Reports
- (c) List of old Code 5320 Memorandum Reports
- 1. In Enclosure (a) it was recommended that the following reports be declassified, four reports have been added to the original list:

Formal: 5589, 5811, 5824, 5825, 5849, 5862, 5875, 5881, 5903, 5962, 6015, 6079, 6148, 6198, 6272, 6371, 6476, 6479, 6485, 6507, 6508, 6568, 6590, 6611, 6731, 6866, 7044, 7051, 7059, 7350, 7428, 7500, 7638, 7655. Add 7684, 7692.

Memo: , 1251, 1287, 1316, 1422, 1500, 1527, 1537, 1540, 1567, 1637, 1647, 1727, 1758, 1787, 1789, 1790, 1811, 1817, 1823, 1885, 1939, 1981, 2135, 2624, 2701, 2645, 2721, 2722, 2723, 2766. Add 2265, 2715.

The recommended distribution statement for the these reports is: Approved for public release; distribution is unlimited.

2. The above reports are included in the listings of enclosures (b) and (c) and were selected because of familiarity with the contents. The rest of these documents very likely should receive the same treatment.

J. M. Headrick Code 5309

Copy:

code 1221 - GR OK HO197-

Code 5300 Code 5320 Code 5324